Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Reprod Immunol ; 159: 104133, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37647796

RESUMO

The effect of interleukin-6 (IL-6) supplementation during the different phases of in vitro embryo culturing (IVC) on embryo development and embryonic gene expression was studied in ovine. IL-6 was added to IVC medium during the late phases (72-192 h; 5, 10, and 25 ng/ml IL-6) or entire period (0-192 h; 10 ng/ml IL-6) of IVC to determine its effect on embryo development. Further, the effect of IL-6 (10 ng/ml) supplementation at the 72 h of IVC on gene expressions associated with JAK/STAT signalling and pluripotency in 8-16 cell embryos (1 h post-supplementation) and compact morulae (48 h post-supplementation), and apoptosis and primitive endoderm (PrE) development in compact morulae was investigated. The supplementation of 10 ng/ml IL-6 during the late phases of IVC significantly (P < 0.05) increased blastocyst formation (35.2 ±â€¯1.52%) compared to the control (21.1 ±â€¯1.11%), and 5 ng/ml (25.9 ±â€¯2.98%) or 25 ng/ml (16.5 ±â€¯0.73%) IL-6 groups. Conversely, IL-6 (10 ng/ml) treatment throughout the IVC period significantly (P < 0.05) decreased the rate of cleavage (55.4 ±â€¯1.57%) and blastocyst formation (14.5 ±â€¯1.28%) compared to the control group (65.8 ±â€¯1.35% and 21.5 ±â€¯0.97%, respectively). In 8-16 cell embryos and compact morulae, the IL-6 treatment significantly (P < 0.05) affected the expression of genes associated with JAK/STAT signalling and pluripotency. Further, the treatment significantly (P < 0.05) downregulated BAX and CASP3, and upregulated GATA6 expression in compact morulae. In conclusion, IL-6 supplementation affected the in vitro development of ovine embryos in a dose- and time-dependent manner. The beneficial effect of IL-6 on the development of late-stage embryos was mediated through the changes in gene expressions associated with JAK/STAT signalling, pluripotency, apoptosis and PrE development.


Assuntos
Apoptose , Interleucina-6 , Humanos , Ovinos , Animais , Desenvolvimento Embrionário , Transdução de Sinais
2.
Anim Biotechnol ; 32(6): 798-805, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32293977

RESUMO

This study aimed to assess the effect of the insulin-like grow factor 1 (IGF-1) treatment during in vitro maturation on the gene expression and developmental ability of ovine oocytes. Ovine cumulus-oocyte complexes (COC) were matured in vitro without (control) or with the supplementation of IGF-1 (100 ng/ml) and then subjected to in vitro fertilization and culture. The rate of oocyte maturation and embryo development was recorded and expression of the selected genes (involved in the PI3K/Akt and apoptosis signaling) was assessed in the matured oocytes. The IGF-1 treatment significantly (p < .05) improved the oocyte maturation rate (%) as compared to the control (81.5 ± 2.40 vs. 73.6 ± 0.94). Similarly, as compared to the control, the IGF-1 treatment significantly (p < .05) improved the rate (%) of cleavage (54.7 ± 1.58 vs. 67.2 ± 3.65) and the formation of 4-8 cell embryos (30.7 ± 2.89 vs. 44.1 ± 4.01) and morula (20.7 ± 2.08 vs. 32.8 ± 2.78). The IGF-1 treatment significantly (p < .05) upregulated the expression of IGF1R, PI3KR1, AKT1 and BCL2 and downregulated the expression of GSK3ß, FOXO3 and CASP9 in the matured oocytes. In conclusion, the IGF-1 treatment significantly improved the developmental competence of ovine oocytes through the regulation of the PI3K/Akt and apoptosis signaling.


Assuntos
Apoptose , Oócitos/crescimento & desenvolvimento , Transdução de Sinais , Somatomedinas/farmacologia , Animais , Oócitos/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ovinos
3.
Cytokine ; 113: 296-304, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30049453

RESUMO

Interleukin-7 (IL-7) mediated signals are linked to development, proliferation, survival and differentiation of cells. Recent evidences indicate its role in oocyte maturation process as well. Nevertheless, the underlying mechanisms of IL-7 involvement in oocyte maturation are not well characterized. In addition, currently no information is available on the effect of exogenous IL-7 on oocyte maturation in ovine or any other species. In this study, the effect of IL-7 supplementation during in vitro maturation (IVM) on the maturation rate, production of reactive oxygen species (ROS) and gene expression of ovine cumulus-oocyte complexes (COC) was assessed. IL-7 (0.5, 1, 2, 5 and 10 ng/ml) was supplemented in IVM medium at the beginning (0 h) and maturation rate of COC was assessed at the completion of IVM (24 h). The maturation rate (%) was found significantly (P = 0.000) greater with the 1 ng/ml of IL-7 supplementation (69.5) than control (60.0). In contrast, the maturation rate was reduced significantly (P = 0.000) with the 2 (47.1), 5 (39.2) and 10 ng/ml (39.1) of IL-7 as compared to the control. The level of intracellular ROS in the matured COC was found considerably higher with the 5 ng/ml of IL-7 followed by 1 ng/ml of IL-7 and control. It was evident that in the presence of superoxide dismutase-inhibitor, 1 ng/ml of IL-7 did not stimulate oocyte maturation. In contrast, oocyte maturation was improved with 5 ng/ml of IL-7 supplementation in the presence of NADPH-oxidase-inhibitor. IL-7 supplementation influenced gene expression in COC in a dose and time dependant manner. The expression of genes related to ROS production and apoptosis were upregulated and the genes associated with antioxidant mechanisms were downregulated noticeably with the supplementation of 5 ng/ml of IL-7. In conclusion, IL-7 at low concentration was beneficial for oocyte maturation, which was likely mediated through the favourable level of intracellular ROS and antioxidant mechanisms. In contrast, the detrimental effects of greater IL-7 concentrations on oocyte maturation were possibly arbitrated through the ROS-mediated oxidative stress, compromised antioxidant mechanism and stimulated apoptotic signalling.


Assuntos
Apoptose/efeitos dos fármacos , Interleucina-7/farmacologia , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Oócitos/citologia , Ovinos
4.
J Assist Reprod Genet ; 34(11): 1493-1500, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28721540

RESUMO

PURPOSE: Cumulus cells (CC) play important roles in oocyte development and cumulus expressed genes can be used as markers for oocyte quality. This study aimed to investigate temporal changes in the expression of cumulus marker genes during oocyte maturation as possible biomarkers of embryo developmental competence in ovine. METHODS: Gene expression was assessed in the CC of the BCB+ (developmentally competent) and BCB- (developmentally poor) oocytes at 0, 12, and 24 h of in vitro maturation (IVM). Further, the association between the temporal cumulus gene expression and in vitro oocyte and embryo development was assessed. RESULTS: The maturation and blastocyst formation rates were found significantly greater for the BCB+ than the BCB- oocytes. At the 0 h of IVM, a significant upregulation in the expression of PTGS2, STAR, SDC2, LHR, FGF2, BCL2, IL7RA, HSPA1A, and IFNT was observed in the CC of the poor (BCB-) as compared to the competent (BCB+) oocytes. In contrast, it was observed that as maturation progressed, the cumulus expression of most of the favorable genes was reduced and was found significantly downregulated at the completion of IVM in the poor as compared to the competent oocytes. CONCLUSIONS: The study revealed noticeable differences in the cumulus gene expression profile at different stages of IVM between ovine oocytes of differential developmental ability. The results indicated that the loss of cumulus gene expression along the maturation period in the poor oocytes was related to their intrinsic poor quality in the ovarian follicle.


Assuntos
Células do Cúmulo/metabolismo , Desenvolvimento Embrionário/genética , Técnicas de Maturação in Vitro de Oócitos , Oócitos/metabolismo , Biomarcadores , Blastocisto/metabolismo , Ciclo-Oxigenase 2/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Choque Térmico HSP70/genética , Humanos , Oócitos/crescimento & desenvolvimento , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Sindecana-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...